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Chapter 6. On hadrons theory 
As it is known the hadron theory is based on the Yang-Mills equation. 

1.0. Introduction. Dirac and Yang-Mills equations of SM 
As it follows from the Standard Model theory (Pich, 2000; Peak and Varvell ; 

Okun, 1982).   the quark family is analogue to the lepton family and the Yang-Mils 
equation is the generalisation of the Dirac electron equation. 

The Dirac equation for the electron in the external field can be written in the 
form (Schiff, 1955): 

 ( ) 0ˆˆˆ 2 =++ ψβψα µµµ cmpp e
e  (1.1) 
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external electromagnetic field; respectively; ( )A
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,ϕ  is 4-potential of the external 

field;  is the light velocity, c me,−  are the electrical charge and mass of the 

electron correspondingly. 
In Quantum Chromodynamics, which is described by Yang-Mills equation, we 

have quarks instead of electrons, and gluons instead of photons, between which there 
are the strong interactions instead of the electromagnetic interactions. The Yang-
Mills equation for one quark may by written (Pich, 2000; Peak and Varvell ; Okun, 
1982)    similarly to (1.1): 

 ( ) 0ˆˆˆ 2 =++ qqq
q cmpp ψβψα µµµ , (1.2) 

where qψ  are the quark fields, µµ Gicgpq
r

≡ with a
a

aGG λµµ ∑
=

=
8

12
1r

 is the 

potential of the gluon field, qa mg,,λ  are the Gell-Mann matrices, strong charge 

and quark mass, respectively. 

2.0. “One quark” theory of hadrons 
Formally we can say (Peak and Varvell ; Okun, 1982), that hadron is described 

by two or three Dirac electron equations of (1.1) type. Thus, conditionally we can 
name the Dirac electron equation as the “one quark” equation. 
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But here we need to take into account that the Dirac equation (1.1) is not the free 
electron equation. On the other hand, the equation (1.2) is indeed the equation of the 
“free” quark. The external field terms are used in the QED for the description of the 
interaction between the electron and other particles. The similar terms in the Yang-
Mills equation are the internal field, which describes the quark-quark interaction of 
the same hadron. 

3.0. The derivation of Yang-Mills equation in framework 
of CWED 

In the present chapter we will show that the CWED representation allows us to 
interpret the Yang-Mills equation as the curvilinear electromagnetic waves 
superposition. 

Obviously, to obtain the Yang-Mills equation we must sum three “one quark” 
equations without mass and “turn on” the twirling of the fields. 

3.1. Electromagnetic forms of “three quark” equations 
As the Pauli matrices are (Ryder, 1985) the generators of the 2D rotation, for the 

“three quark” electromagnetic representation we must use the generators of the 3D 

rotation, which are the known photon spin 3x3-matrices Ŝ
r

of the O(3) group [3,12]: 
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As the “three quark” equations for the particle and antiparticle we will use the 
Dirac equations (1.1) in the following form: 
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where the left upper index “6” means that these matrices are the 6x6-matrices of the 
following type: 
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ψ6 is the 6x1 matrix. 

As it is not difficult to test the above matrices give the right electromagnetic 
expressions of the bilinear form of the theory:  

the energy: UHE πψαψ 8ˆ 226
0

66 =+=+
rrr

,  
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the Poynting vector (or momentum): ψαψ
π

666

8
1 rr

+=PS ,  

and the 1st scalar of the EM field: ( ) µν
µνπψαψ FFHE 42ˆ 226

4
66 =−=+

rr
. 

3.2. “Three-quarks” equation without mass-interaction terms 
From the above follows that the proton equation can be represented by three 

“one quark” equations, i.e. three electron equations or three pairs of the scalar 
Maxwell equations (one pair for each co-ordinate). Obviously, there is a possibility 
of two directions of rotations of each quark (the left and the right quarks). Therefore, 
the 6+6 scalar equations for proton description must exist as well as the 6+6 
equations for the antiproton description.  

Let us find at first these equations without mass-interaction, putting the mass-
interaction terms equal to zero. Using (3.3) from the equations (3.2) we obtain the 
Maxwell equation without current: 
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As it is not difficult to see that each pair of the equations a,b,c describes a 
separate ring; the fields vectors of equations (3.4) are rolled up in  the plains XOZ, 
ZOY, YOX, and similarly the  fields vectors of the equations (3.5) are rolled  in the 
plains XOY, YOZ , ZOX. 

3.3. The compensation or gauge fields in the modern theory 
The modern particle theory is also known as the gauge field theory because the 

interactions between the particles are introduced in the field equation via the gauge 
transformations. It is known (Kaempffer, 1965; Ryder, 1985) that this procedure is 
mathematically equivalent to the field vector transformations in the curvilinear space, 
which lead to the covariant derivative appearance.  
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It is not difficult to show (Ryder, 1985), that the electromagnetic field appears 
naturally as a consequence of the requirement of the Lagrangian invariance relatively 
to the gauge transformations of the local rotations in the internal space of the 
complex field ψ , when the Lagrangian has the symmetry O(2) or U(1). 
Mathematically this is expressed through the replacement of the simple derivatives 
with the covariant derivatives.  

The generalization of this result on a case of 3D-space is the Yang - Mills field. 
The elementary generalization of this symmetry is the non-abelian group SU (2); i.e. 
the question is about the theory of the non-abelian gauge fields. 

Let’s consider (see details in (Ryder, 1985)) the rotation of some field vector F
s

 
in three-dimensional space around some axis on an infinitesimal angle. Here the 
value ϕr  is a rotation angle, and the vector ϕϕ rr /  sets the direction of the axis of 

rotation. The transition from the initial position of a vector to the final position will 
be defined by the transformation: 

 FFFF
rrrrr

×−=→ ϕ' , (3.6) 

The problem is to create independent rotations in various points of space. In 
order to construct correctly the covariant field derivative, we should make parallel 
transport of the vectors into the space, instead of on a flat curve, as in the above case 
of spinorial theory. The corresponding analysis (Ryder, 1985) allows us to receive an 
expression similar to the expression, which appears by the spinor transport on a flat 
curve. 

It can be shown  also  (Kaempffer, 1965; Ryder, 1985) that this expression 
defines a covariant derivative of the field ψ , which is transformed according to 
some representation of a group: 

 (D
dx

D igM Aa a )ψ
ψ ∂µ µ µ µ= = − ψ , (3.7) 

where the matrixes M a are the generators of the rotation. It is not difficult to make 
sure that this expression gives the same covariant derivative, as found earlier in the 
case of electron theory, and can give the mass-interaction terms. 

In the following section we will consider the electromagnetic discription of the 
mass-interaction term appearance. 

3.3.1. The electromagnetic description of the mass-interaction  term 
appearance 

The spinorial theory shows that the appearance of the internal mass-interaction 
terms is bounded with the three vectors PSHE

rrr
,, , moving along the curvilinear 

trajectory. These vectors represent the moving trihedral of the Frenet-Serret  (Gray, 
1997). In the general case, when the electromagnetic wave field vectors of three-
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quark particles move along the space curvilinear trajectories, not only the additional 
term, defined by the curvature, appears, but also the terms that are defined by the 
torsion of the trajectory.  

Actually, in this case we have: 
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where is the binormal vector. According to the Frenet-Serret formulas we have: b
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 is the torsion of the trajectory and  is the torsion radius.Thus, the 

displacement currents can be written in the form: 
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where Τ≡=
Τ

Τ c
r

pυω  we name the torsion angular velocity. 

Thus, we can obtain the following electromagnetic representation of the three-
quarks’ equations:  
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where  ( ) are the currents of each quark:  kj 3,2,1=k

 bEEj kke
k

rrr

π
ωτ

π
ω

44
ΤΚ +=  and nHj km

k
rr

π
ω
4
Τ= , (3.13)  

As we noted at the analysis of electromagnetic representation of the electron 
equation, the charge, mass and interaction between particles arise simultaneously 
during twirling and division of a photon. In other words, the appearance of 
currents at twirling a linear photon simultaneously describes the appearance of a 
charge, masses and electron interactions . 

Since in this case we have, conditionally speaking, three electromagnetic 
electron equations, it is necessary to conclude, that EM masses of quarks, their 
charges and interactions between them are described by nine currents of the 
equations (3.11) or (3.12). It is possible to assume, that three from them which 
are tangential electric currents, define charges of quarks and partially the masses. 
Whether the others currents (three electric binormal and three magnetic normal) 
insert some amendments into these parameters, it is difficult to tell. 

3.3.2. The description of of the mass-interaction term appearance in 
the framework of Rieman geometry 

     The appearance of additional term follows from the general theory of the 
vector motion along the curvilinear trajectory. This theme was studied in the vector 
analyse, in the differential geometry and in the hypercomplex number theory 
hundred years ago (Madelung, 1957; Korn  and Korn, 1961) and it is well known. 
Below we consider some conclusions of these theories.  
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Any vector ),( trF rr
 can have the following forms (Korn and Korn, 1961): 
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where  are the invariant and co-variant vector 

modulus and 
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ier and ier  are the basis vectors, which in general case are changed 

from point to point. When vector moves along the curvilinear trajectory the partial 
derivatives get the view: 

 j

i

i
i

j
i

j
ii

ij

i

j x
eFe

x
F

x
eFe

x
F

x
F

∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

=
∂
∂

r
r

r
r

r

, (3.14) 

where the following notations are used: 
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The coefficients  are named Christoffel symbols or bound coefficients. Thus, 
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we obtain:   
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The same we can obtain for the other directions of the photons. 
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Thus, in the general case, when the electromagnetic field vectors of three-knot 
particles move along the curvilinear trajectories, the additional terms of the same 
type, which we obtained in the case of Yang-Mills equation, appear.  

Note: in the framework of CWED the Christoffel symbols are not the abstract 
mathematical values. On one hand they are the physical values; namely, they are the 
currents, which appeared thanks to the twirling and torsion of the electromagnetic 
vectors. On the other hand they have geometrical sense: they are proportional to  the 
curvature of the trajectory Κ  and  to  the torsion of the trajectory Τ . 

4.0. The introduction of the terms of interactions of quarks 
 Let us examine the formation of hadrons (for example, proton) from the point of 

view of the reaction of photoproduction 

   ,  (4.1) NppN ++→+ −+γ

where   are a gamma-quantum (photon), proton and antiproton 
respectively, and    is the nuclear field, in which is accomplished the symmetry 
breaking of photon and as consequence tht appearance of massive particles. It should 
conclude from (4.1) that quarks themselves are produced simultaneously with 
interaction between them. Remember that we had the same in the case of the 
photoproduction of electron-positron pair with the only difference that in the last case 
the interaction was external. As the consequence of this we obtained the doubled 
value of mass member.  Consequently, instead of (3.2) we will have 

−+ pp ,,γ
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where here through    (lm 9,....2,1=l )  we conditionally designate the appropriate 
mass and currents, which describe both the quarks and the gluons. According to (4.2) 
we have 9 quark currents and 9 gluon currents, so that  the summary energies each of 

these currents    must be the same, or in other words summary 

energy of proton is divided in half between the quarks and the gluons. It is not also 
difficult to explain, why the inner virtual photons, called gluons, inside the hadron 
acquire the currents: in the strong intrinsic field of quarks they must be bent, 
acquiring some properties of massive particles.  
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These conclusions, in essence, do not contradict experimental and theoretical 
data, obtained within the framework of standard model. 
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5.0. EM hadron models 
According to SM there are two sorts of hadron: barions, which contain three 

quarks, and mesons, which contains two quarks. 

5.1. “Three quarks” model    
We can suppose that in electromagnetic representation a barion is topologically 

the superposition of three knots and has the scheme of the trefoil knot (fig. 1): 

 
Fig.1 

The figure 1 is taken from website (Möbius strip trefoil knot, MathWorld): 
http://mathworld.wolfram.com/TrefoilKnot.html, where the animation shows a 
series of gears motion along a Möbius strip trefoil knot as the electric and magnetic 
field vectors motion. A knot is defined as a closed, non-self-intersecting curve 
embedded in three dimensions. Knot theory was given its first impetus when Lord 
Kelvin proposed a theory that atoms of Democritus is vortex loops (Kelvin,1867). 
The trefoil and its mirror image are not equivalent. In other words, the trefoil knot is 
chiral object. It is, however, invertible.  

The equation of one loop (i.e. ring) is the Dirac equation that has a harmonic 
solution. Therefore, it can be supposed that the EM hadrons are the 3D superposition 
of two or three harmonic oscillations. On other words, the EM hadrons are similar to 
the space wave packets. According to Schreudinger (Schreudinger,  1926) (see also 
(Jammer, 1967), section 6.1) the wave packets, built from harmonic waves 
(oscillations), don’t have a dispersion, i.e. they are stabile. Thus, we can, as a fist 
approximation, build the hadrons model as the space packet of the 3D superposition 
of three harmonics oscillations. 

Here it must be noted that the superpositions of harmonic oscillations (i.e. 
Lissajoues figures) are not the topological figures as knots, because they are the self-
intersecting curves. But we can to suppose that during the hadron formation as 3D 
Lissajous figures the loops will not intersect on account of the repulsion of currents.  
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The models were constructed by use of MathCAD-program. Probably the below 
models differ a lot from the real CWED particles and can not be used for calculation 
of the particle features. But they give some representation about them.  

Thus, we suppose that the three-loops model (barion)  is built from three 
harmonics oscillation. Let’s choose the following oscillation parameters: 

,31 =ω   ,22 =ω   33 =ω , , 

,
21
πφ =   ,

22
πφ =  03 =φ ,   

,21 =r         ,22 =r 23 =r . 
The argument has the view: 

N
jt j

π
⋅⋅= 2: , where 200:=N , Nj ..0:= ,  Nk ..0:= , kvk =: , 

The harmonic oscillations are described by functions (for each co-ordinate axis):  
)sin(: 111, φω −⋅⋅= jjk trX  

)sin(: 222, φω −⋅⋅= jjk trY  

)sin(: 333, φω −⋅⋅= jjk trZ  

As result we obtain the following three-loops figure (fig.2):    

 
Fig. 2 

To show the field plane twirling and twisting we change the parameter  to jt

2.2
: jt j = .Then we have: 
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Fig. 3 

5.2. “Two quarks” model 
To build the two-loops model (meson) in the above proton model equations we 

choose:  11 =ω  and 01 =φ  and put 0:, =jkZ . Then we obtain the figure 4:  

 
Fig. 4 

It is necessary to note that depending on polarisation of the curvilinear photon 
(plain, circular, elliptic) the above models can have numerous different features. 

We hope that the further investigations will allow us to build more realistic 
models, which will give us the opportunity to calculate the CWED particle features. 

Discussion 
The above electromagnetic representation of the Yang-Mills equations allows us 

to discuss some particularities of the QCD from point of view of CWED models: 
1. The fractional charge of the quarks: according to the above results the 

electric field trajectory of the quarks not only has a curvature, but also a torsion; 
hence, the tangential current, generated by the electrical field vector transport, 
alternates along the space trajectory. Consequently, the electric charge of one knot, as 
an integral from this current, will be less, than the electron charge. But the total 
charge from all knots can be equal to the charge of the electron.  

2. Quarks confinement: if quarks are two or three connected knots, quarks 
cannot exist in a free state. 

3. The charges and masses of the quarks: in the CWED model quarks are 
defined by the rotation frequencies of each knot. From three-knot model it follows 
that figure 2 has a steady structure only at the certain circular frequencies ratio 3 : 3 : 
2. So, for barion model two of quark charges and masses must be equal among them 
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and not equal to mass of third quarks. Analogically, two-knot figure 4 have 
frequencies ratio 2 to 3 and therefore the meson model  has two different quarks. 

4. Non-linearity of the Yang-Mills equation: obviously, the Yang-Mills 
equation as the superposition of non-linear electromagnetic waves is the non-linear 
equation. 

5. The gluons and photons analogy: according to the CWED topological 
models the gluons are the virtual photons, by which the knots interact between 
themselves. 

6. The colours of quarks: it can be suppose that colours of quarks can identified 
with the quark currents since to each of the knots of the model have three different 
currents. 

7. The colours of gluons: it can be suppose that colours of gluons can identified 
with two half-periods of virtual photons-gluons in respect that in the inner space of 
hadron these photons are bent and take the currents. 

8. The strong interactions: possibly as it is supposed by Denis Wilkinson  
(Wofson College Lectures, 1980) the strong interaction can appear analogically to 
the Van der Waals forces in the atoms. As a result of the interpenetration of the 
atoms between them appears the forces, known by the name to Van der Waals, 
which presents the reflection of the specific side of electric force. Analogous 
correspondence occurs also for the force, which acts between the quarks and that 
caused by gluons, from one side, and by the force, which acts between the protons 
and the neutrons, with another. In this sense the strong interaction between the 
protons with respect to the strong interaction between the quarks corresponds to the 
appearance of  Van der Waals force. 

  
Of course the further analysis is needed to confirm or reject the above 

assertions, since they don’t follow direct from the Yang-Mills equations. But as 
we see the CWED have the possibilities to explain many features of  Standard 
Model. 
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